Tools and Approaches for Assessing and Improving Irrigation Efficiency in Drip Irrigated Row Crops

University of **California** Agriculture and Natural Resources

Michael Cahn Irrigation and Water Resources Advisor UCCE Monterey, San Benito, and Santa Cruz Counties

What is irrigation efficiency?

Comparison of the volume of water **applied** to the crop **to** the volume of water **required** by the crop for **consumptive** use (*irrigation requirement*)

- Evapotranspiration
- Salinity control (leaching of salts from the root zone)
- Climate modification (crop cooling, frost protection)

Irrigation Requirement = 13 inches Applied Water = 15 inches

Irrigation Efficiency = $\frac{13 in \times 100}{15 in}$

Benefits of a high Irrigation Efficiency

Minimize nutrient losses

Steps to achieving a high irrigation efficiency

• **Design**– irrigation system is designed to apply water uniformly to the crop (high Application Uniformity)

- Operation and Maintenance maximize application uniformity of the irrigation system
- Scheduling of irrigations match applied water with crop water needs (Irrigation Requirement)

Identify problems and fix them

Use appropriate filtration for water quality

Screen

Sand Media

Disk

Evaluate Application Uniformity

Measure volume of water discharged from 30 or more emitters for 10 to 15 minutes: eg. 8 emitters × 5 locations in the field

Lowest quarter = $\frac{Average \ volume \ of \ lowest \ 25\% \ of \ the \ emitters}{Average \ volume \ of \ all \ emitters}$

Management of Pressure is Key to Achieving a High Application Uniformity with Drip

Discharge rate of drip tape varies with pressure

Factors that increase pressure variation

ELEVATION CHANGE UNDERSIZED FITTINGS AND PIPE DRIP LINES ARE TOO LONG

2.3 feet of elevation change = 1 psi

Pressure Loss in Mains and Submains (psi loss per 100 ft)

Pipe											
Diameter		flow rate (gal/min)									
(inches)	25	50	75	100	125	150	175	200	300	400	500
1.5	3	13	27								
2.0	1	3	7	11	17	24					
2.5	0	1	2	4	6	8	11	14	29		
3.0	0	0	1	2	2	3	4	6	12	20	31
3.5	0	0	0	1	1	2	2	3	6	10	14
4.0	0	0	0	0	1	1	1	1	3	5	8
5.0	0	0	0	0	0	0	0	0	1	2	3
6.0	0	0	0	0	0	0	0	0	0	1	1

Undersized connections between the main and submain can cause excessive pressure loss

Assure that the pressure loss along the length of the drip lines is not excessive

Monitor and Record Pressure

Monitoring pressure is more complicated than it seems

- Mechanical pressure gauges on an irrigation system are often inaccurate, in the wrong location, or broken.
- New mechanical pressure gauges may be inaccurate by as much as 1 to 2 psi (10% to 20% error for tape at 10 psi).

Best practices for monitoring pressure of drip systems

- Install Schrader valves where you want to check the pressure of the drip system (submain, ends of drip tape, middle of field, etc.
- Add a Schrader adapter to an accurate mechanical gauge
- Use the same gauge to check pressures
- Periodically check the calibration of the pressure gauges and note if they are above or below the calibrated gauge
- Use a gauge with 0 to 30 psi range for the drip system and a gauge with 0 to 100 psi range for pressures greater than 30 psi
- Take care of your pressure gauges. They are more fragile than you might think.

Periodically check the calibration of all pressure gauges

Many irrigators regulate pressure of drip systems using a valve

If pressure varies at the pump, then the flow rate of the drip system will vary

The application rate of this drip system varied 33% during the season

Adjustable pressure reducing valves are becoming simpler to use

- \checkmark 2, 3, 4- inch diameter
- ✓ Accommodate flow rates from 100 to 500 gpm
- ✓ Easy to adjust downstream pressure

Pressure regulating valve minimized variability in the application rate of the drip system

Matching Irrigations with Crop Water Requirements

Various Approaches to Irrigation Scheduling

Weather (ET)-based **Plant-based Soil-based**

Flowmeters are useful tools for irrigation scheduling

Weather-based irrigation scheduling

Converting Reference ET to Crop ET:

$$\mathbf{ET}_{\mathbf{crop}} = \mathbf{ET}_{\mathbf{ref}} \times \mathbf{K}_{\mathbf{crop}}$$

K_c can vary from 0.1 to 1.2

CropManage: Online irrigation and nitrogen management decision support

☆ broccoli example ×					
1 Oct 2022	- 31 Mar 2023	💠 🖩 🗘 📖			
Tasks	History	Ē			
COMPLE	TED				
JAN 17	20-0-0-5	10 gal/acre			
JAN 16	📇 Tissue Sample	4.1% Nitrogen			
JAN 11	🗮 Drip	3.3 hr			
JAN 6	🗮 Drip	3.2 hr			
JAN 3	🗮 Drip	3.4 hr			
DEC 30	🗮 Drip	3.1 hr			
DEC 28	🗮 Drip	3.9 hr			
DEC 23	🗮 Drip	3.2 hr			
	Vie	ew all events by: 📰 🖽 🛗			

Using CropManage for Weather-based Irrigation Scheduling

Add Watering Event Watering Event				
Event Date * 1/31/2023	ē			
Irrigation Method * Drip	•			
Recommendation () 6.4 hours Recommendation Summar	y_ ~ <	inches hours		
Manager Amount Enter the amount recommended by a manager	hours			
Water Applied Enter the amount that was actually ap	hours			
		Cancel	ate	

Add Watering Event Watering Event						
Event Date * 1/31/2023	÷					
Irrigation Method * Drip	•					
Recommendation 🛈	inches hours					
6.4 hours						
Recommendation Summary 🔿						
Average ET 🛈	0.08 in./day					
Average Crop Coefficient 🛈	0.9					
Distribution Uniformity 🛈	90%					
Days Since Last Irrigation $\widehat{oldsymbol{eta}}$	15 days					
Leaching Requirement 🛈	0%					
Total Precipitation 🛈	0.34 in.					
Total Crop ET = Average ET x Av Last Irrigation	verage Crop Coefficient x Days Since					
1.05 in. = 0.08 x 0.90 x 15						
Recommended Irrigation Amount = Total Crop ET x 100 / (Distribution Uniformity x (1 - Leaching Requirement)) - Total Precipitation						
	Cancel Crea	ate				

When to irrigate?

Soil Moisture Sensors

Tension

Volumetric

Summary

- Achieving a high irrigation efficiency can maximize yield and quality as well as save water, fertilizer, and money.
- Both application uniformity of the drip system and scheduling affect irrigation efficiency.
- The design, operation and maintenance of the irrigation system will affect how uniformly the drip tape applies water to the crop.
- Tools such as flowmeters, soil moisture sensors, CropManage, and calibrated pressure gauges can help you assess if you are applying water uniformly and matching irrigation applications with crop water needs.