Nitrogen Mineralization from Organic Fertilizers and Composts

Joji Muramoto

Assistant CE Organic Production Specialist

Center for Agroecology

UC Santa Cruz

UCCE Small Farm Organic Seminar January 24, 2023

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

UC SANTA CRUZ

Center for Agroecology

Outline

- 1. Why nitrogen (N)?
 - N in plant and N in soil
 - plant available N in soil
- 2. N mineralization vs. N immobilization
- 3. N mineralization of organic fertilizers and composts
 - Incubation study
 - Simulation model

Nitrogen (N) in plants; A key to crop production

- Primary nutrient affecting plant growth
 - photosynthesis
 - biomass structure
 - metabolism
 - energy production
 - reproduction
- N deficiency
 - Yellowish green leaves, smaller plants, lower yield
- N excess
 - Dark green leaves, large vegetative plants, susceptive to diseases

* Plants can absorb small amounts of organic N and some crop plants can do more than others

** Biological processes affected by environmental factors such as soil temperature. moisture, etc.

Nitrogen mineralization & immobilization

- Soil microorganisms decompose residue
- Need N and C as building blocks for their own biomass
- C is also used as energy source
- N mineralization: Release excess N in the form of NH₄⁺ into soil solution
- N immobilization: Uptake of NO₃⁻ or NH₄⁺ from soil solution and incorporation into microbial tissue

N mineralization vs. N immobilization

(Adopted from USDA-NRCS, 2017)

N dynamics in conventional systems

N dynamics in organic systems

N dynamics in organic systems

Factors affecting decomposition and N mineralization

- Soil temperature
- Soil moisture
- Quality of organic source
 - Nitrogen content
 - C to N ratio
 - Availability of C and N
- Management

Amendment incubation

N Contents and C:N Ratios of Organic Fertilizers

Material	Typical N content (%)	Typical C:N ratio
Municipal yard trimmings composts	0.5 - 2.0	13 - 20
Poultry manure composts	2.0 - 5.0	6 - 8
Granular fertilizers	2.0 - 7.0	5 - 7
Blood & feather meals	13 - 15	3 - 4
Liquid fertilizers	2.0 - 4.0	4 - 6
Guano	12 - 13	3 - 4

N Release Patterns of Organic Fertilizers

Lazicki et al., 2020

Total N vs. Plant available N after 12 Weeks

	Material	Average total N content (%)	N available after 12 weeks	Plant available N content (%)
	Municipal yard trimmings composts	1.25	-3-4%	0-0.1
	Poultry manure composts	3.5	30 – 35%	1.1 - 1.2
<	Granular fertilizers	4.5	38–60%	1.7 - 2.7
	Blood & feather meals	14	65 – 70%	9.1 – 9.8
<	Liquid fertilizers	3.0	50 – 100%	1.5-3.0
	Guano	12.5	80–90%	10 - 11

Based on Lazicki et al., 2020

Effect of C to N ratio on N release

90

70

50

30

10

-10

0

12 weeks

Available N @

(% amendment N)

Plant-based compost Manure-based compost Pelleted/granular fertilizers Slaughter products Liquid products **************** 10 15 25 5 20 C:N ratio Lazicki et al., 2020

AgOrder 4.0

Table MRP-3. Organic Fertilizer Discount Factor

C to N Ratio of	Discount Factor Based on
Organic Product	Predicted Mineralization
~	Rate (O)
< 1.5	1.00
1.5	0.904
2.0	0.852
2.5	0.802
3.0	0.754
3.5	0.707
4.0	0.661
4.5	0.617
5.0	0.574
5.5	0.555
6.0	0.493
6.5	0.455
7.0	0.418
7.5	0.383
8.0	0.349
8.5	0.317
9.0	0.285
9.5	0.256
10.0	0.228
10.5	0.202
11.0	0.177
11.5	0.153
12.0	0.131
12.5	0.111
13.0	0.091
13.5	0.074
14.0	0.058
14.5	0.043
15.0	0.030

The dataset

Material	Studies Datasets Observations		C to N ratio in dataset			
				Average	Min	Max
Guano	4	8	44	2.8	1.2	3.8
Feather meal	7	14	70	4.0	3.3	10.0
Poultry manure	9	29	195	10.3	6.3	19.5
Poultry manure compost	4	16	77	7.3	5.7	9.4
Vermicompost	8	21	125	11.1	14.9	35.0
Yard waste compost	6	25	126	16.1	9.1	22.3

Geisseler et al., 2021

Guano and feather meal

Geisseler et al., 2021

Poultry manure and poultry manure compost

Geisseler et al., 2021

Yard waste compost and vermicompost

Geisseler et al., 2021

The online tool

http://geisseler.ucdavis.edu/Amendment_Calculator.html

Nutrient Management

UNIVERSITY OF CALIFORNIA

Nit

Nitrogen Mineralization from Organic Amendments

The calculations in this tool are based on an analysis of 113 datasets from the scientific literature. Nitrogen mineralization rates are adjusted based on soil temperature data from local CIMIS weather stations. Soil moisture is assumed to be optimal near field capacity. When amendments are incorporated into dry soil, N mineralization would be slower than calculated. The tool should not be used when amendments are left on the soil surface.

Information on lines marked with an * needs to be provided. If no information on amendment and soil properties are entered, the tool will use average values. In this case, however, the calculations will be less accurate for a specific situation.

To be integrated with CropManage!

Factors affecting decomposition and N mineralization

- ✓ Soil temperature
- × Soil moisture ⇒ Assumes moist soil
- ✓ Quality of organic source
 - Nitrogen content
 - C to N ratio
 - Availability of C and N $\,$
- ★ Management ⇒ Assumes incorporation

The online tool Input

Amendment Application

* Required input.

Amendment Properties

Amendment dry matter:	%		
Total nitrogen:	% in dry matter	~	
Carbon to nitrogen ratio:			
Mineral nitrogen: (ammonium and nitrate)	% in dry matter	Ň	•

Soil Properties

Display Result	s/Changes
	ppm Nitrate-N 🗸
	%
	Display Result

The online tool Input

Amendment Application

* Required input.

Amendment Properties

Amendment dry matter:	95	%	
Total nitrogen:	14.5	% in dry matter	~
Carbon to nitrogen ratio:	4]	
Mineral nitrogen: (ammonium and nitrate)	0.06	% in dry matter	~

Soil Properties

Soil organic matter:	3	%		
Residual soil nitrate:	10	ppm Nitrate-N 🗸		
Display Results/Changes				

The online tool Output: Feather meal, Sacramento Valley

Nitrogen Mineralization

The graph and the calculations are based on average values from scientific studies. Weather conditions, soil properties, amendment characteristics and management all can affect N mineralization rates. It is therefore **important to monitor N availability of the field with soil or leaf analyses**. More information about soil and leaf sampling can be found <u>here</u>.

Total N applied:	276 lb/ac
Total mineral N applied:	(i) 1.3 lb/ac
Estimated available N:	162 - 176 lb/ac
Percent available:	i 59 - 64 %

The online tool

Output: Poultry manure, Sacramento Valley

 \sim

Amendment Application

Region*:	Sacramento Valley - Yolo		
Type of amendment*:	Poultry Manure V		
Application rate*:	5 tons/ac		
Application date*:	04/01/2021 🔇		
Period of interest:	6 Months 🗸		
Depth of incorporation*:	8 inches V		
* Required input.			

Amendment Application

Region*:	Sacramento Valley - Yolo		
Type of amendment*:	Poultry Manure	•	
Application rate*:	5 tons/ac		
Application date*:	10/01/2021 🕲		
Period of interest:	6 Months 🗸		
Depth of incorporation*:	8 inches v		

* Required input.

Nitrogen Mineralization

The online tool

Output: Poultry manure compost, Tulelake Basin

 \sim

Amendment Application

* Required input.

Nitrogen Mineralization

Amendment Application

tons/ac

inches 🗸

 \sim

Next Steps

- What is N release pattern of cover crops?
- How can we synchronize (= match) N supply from multiple organic fertilizers with the crop N demand?

Resources

 Estimating Nitrogen Availability in Organic Annual Production: For Nitrogen Budgeting and Other Purposes. UCANR publication 8712, <u>https://anrcatalog.ucanr.edu/Details.aspx?itemNo=8712</u>

 Practical Training on Nitrogen Planning and Management in Organic Production of Annual Crops Tuesdays, 11/28, 12/5, 12/12/2023 (tentative) Email joji@ucsc.edu, or mglloyd@ucanr.edu to receive an updated announcement

Acknowledgements

- CDFA Specialty Crops Block Grant Program
- CDFA Fertilizer Research and Education Program (FREP)
- Daniel Geisseler, Patricia Lazicki, Margaret Lloyd, Richard Smith, Mike Cahn
- Margherita Zavatta, Sidney Lee

Question?

joji@ucsc.edu