Biology and management of thrips and the viruses they spread

Daniel K. Hasegawa Research Entomologist USDA-ARS, Salinas CA

2023 Organic Seminar Series 3/7/2023

Agricultural Research Service

Biology and management of thrips and the viruses they spread

Thrips/tospovirus biology

- Virus symptomology
- Thrips life cycle and virus transmission

Thrips and INSV host range

- Thrips dispersal and abundance in crops and non-crops
- Top 10 INSV hosts

Optimizing organic solutions for managing thrips and INSV

- Immune priming
- Precision sprayers

Biology and management of thrips and the viruses they spread

Thrips/tospovirus biology

- Virus symptomology
- Thrips life cycle and virus transmission

Thrips and INSV host range

- Thrips dispersal and abundance in crops and non-crops
- Top 10 INSV hosts

Optimizing organic solutions for managing thrips and INSV

- Immune priming
- Precision sprayers

Thrips as vectors for viruses affecting agriculture

Order: Thysanoptera; Family: Thripidae (thrips, >2,000 species)

Insect vector: Western flower thrips, *Frankliniella occidentalis*, numerous

- **Diseases: Numerous**
- Viruses: *Tomato spotted wilt virus* (TSWV), *Impatiens necrotic spot virus* (INSV), >20 (Family: Tospoviridae) •
- Crops: Tomatoes, pepper, lettuce, onions, maize, ornamentals (orchid, begonia, petunia, etc.), >800 plant species
- Losses: Billions of dollars annually, globally

Adult: 1-2 mm in length

TSWV in tomato and pepper

INSV in lettuce

INSV in coleus

Monterey County's Top Crops: 2021

Сгор	Gross Production Value	Acres	~U.S. contribution
Strawberries	\$968,086,000	10,044	28%
Leaf Lettuce	<mark>\$741,598,000</mark>	<mark>57,483</mark>	<mark>61%</mark>
Head Lettuce	<mark>\$451,556,000</mark>	<mark>37,808</mark>	<mark>56%</mark>
Broccoli	\$309,490,000	38,936	48%
Wine Grapes	\$218,591,000	44,886	3.6%
Spinach	\$173,882,000	16,430	38%
Cauliflower	\$155,983,000	18,404	30%
Celery	\$146,641,000	9,861	57%
Livestock/poultry	\$113,434,000	-	-
Brussels Sprout	\$105,616,000	6,094	-

>100 different crops grown in Monterey County

Lettuce production in Monterey County, CA

>\$1 billion annually, ~100,000 acres, >60% of nation's total production

Crop cycle = ~70-100 days

Impatiens necrotic spot virus (INSV) and it's occurrence in CA lettuce

- Historically considered a pathogen of ornamental crops, but increasing importance in vegetables in Europe and North America
- <u>2006</u>: INSV first reported in lettuce in the Salinas Valley
- 2006 2012: Minor to severe isolated outbreaks of INSV in lettuce
- <u>2019 2022</u>: Severe outbreaks in the Salinas Valley. Up to 100% crop losses.
- <u>2022:</u> >\$150 million dollars lost

Western flower thrips: vector for INSV

Western flower thrips, Frankliniella occidentalis

Vector management challenges:

- Small (1-2 mm), cryptic, high fecundity
- Limited chemical options in CA lettuce
 - ~20% organic production in 2021
- Host range = 100s of plants

Virus Management challenges:

- Lack of genetic-based resistance to INSV in lettuce
- Host range = 100s of plants

Virus must be acquired as larvae to transmit as an adult

- Adults transmit the virus.
- Virus is not passed from adult to offspring.
- Plants that are infected with INSV must be a <u>reproductive host</u> for western flower thrips for virus acquisition to occur.

Thrips transmission of tospoviruses

Uninfected

INSV-infected

Two types of infection

Secondary infection

NASE.

Primary infection

Outside field

INSV incidence strongly aggregates

INSV Incidence

INSV Severity

INSV incidence strongly aggregates

Thrips Abundance

INSV Incidence

Thrips distribution does not <u>always</u> equal INSV distribution

Thrips abundance increases over time

Interpolated index 2 1 1 1 1 2 1.0 1.5 0 2.0 -1 -2

Thrips Abundance

Thrips abundance increases over time

Interpolated

Absolute index 1.0 1.5

Thrips Abundance

Salinas Valley thrips monitoring network

Thrips/sticky card/week (21 total, average)

······ 2019 - - 2020 --- 2021 - · · 2022 --- 2023 200 180 160 140 120 100 80 60 40 20 INS 0 Νοι Feb Aug Sei Jan

Lettuce season

Number of thrips

Lettuce-free period

Air temperature: 20 years

CIMIS Station 116: Salinas North

Biology and management of thrips and the viruses they spread

Thrips/tospovirus biology

- Virus symptomology
- Thrips life cycle and virus transmission

Thrips and INSV host range

- Thrips dispersal and abundance in crops and non-crops
- Top 10 INSV hosts

Optimizing organic solutions for managing thrips and INSV

- Immune priming
- Precision sprayers

Thrips dispersal

- Thrips are poor flyers
- Rely heavily on wind for dispersal
- Distance is hard to estimate

<u> June 6 – July 8, 2022</u>

Thrips abundance in crops and non-crops

Average number of adult thrips/10 flowers

Kiara Gable USDA, Salinas CSUMB undergrad

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

Field surveys to identify hosts for INSV: Salinas Valley

Sampling summary: >3,000 plant samples tested for INSV 73 species: majority weeds, native plants, vegetable crops

Primary detection of INSV: Serological: TAS-ELISA

Validation: Serological: Lateral flow rapid strip tests Genetic: RT-PCR

Top 10 hosts

Marestail

Pictures courtesy of Richard Smith and UC ANR

Top 10 non-lettuce hosts for INSV on the Central Coast of CA

			Seasonal abundance				
Common name	Scientific name	Family	Category	Winter	Spring	Summer	Fall
Little Mallow	Malva parviflora	Malvaceae (Mallow Family)	Broadleaf	++	++	++	++
Annual Sowthistle	Sonchus oleraceus	Asteraceae (Sunflower Family)	Broadleaf	++	++	++	++
Nettleleaf goosefoot	Chenopodium murale	Chenopodiaceae (Goosefoot Family)	Broadleaf	+	++	++	++
Mare's Tail	Conyza canadensis	Asteraceae (Sunflower Family)	Broadleaf	+	++	++	++
Field Bindweed	Convolvulus arvensis	Convolvulaceae (Morning glory Family)	Broadleaf	0	++	++	++
Shepherds Purse	Capsella bursa-pastoris	Brassicaceae (Mustard Family)	Broadleaf	++	++	++	++
Common Purslane	Portulaca oleracea	Portulacaceae (Purslane Family)	Broadleaf	0	+	++	++
Hairy Fleabane	Conyza bonariensis	Asteraceae (Sunflower Family)	Broadleaf	+	++	++	++
Burning Nettle	Urtica urens	Urticaceae (Nettle Family)	Broadleaf	++	++	++	++
Common Lambsquarter	Chenopodium album	Chenopodiaceae (Goosefoot Family)	Broadleaf	0	++	++	++

http://ipm.ucanr.edu/PMG/weeds_all.html

Top 10 non-lettuce hosts for INSV on the Central Coast of CA

Hasegawa et al., in prep

SALINAS VALLEY AGRICULTURE

Highlighting agricultural developments, problems, research, & issues for central coast CA

Non-INSV Host Plants for Habitat Plantings

non not not name for name		Search Enter Search Terms	C
Author: Richard Smith	Published on: March 3, 2023	Subscribe	
Non- Impatiens Necrotic Spot Virus (INSV) Plants for Habitat Plantings		Enter e-mail Address	100
Richard Smith ¹ , Daniel Hasegawa ² , Kirsten Pearsons ¹ and Yu-Chen Wang ¹		Recent Posts	ANR Blogs
1 - UCCE Monterey County and 2 - USDA ARS, Salinas		Non-INSV Host Plants Plantings	s for Habitat

Species	No. tested with zero positives	Comments
Insectary Planting		
Alyssum	14	
Cover crops ¹		
Cereals (Rye, triticale and oats)	10	Oats and barley were surveyed. Cereals generally not been found to be hosts for INSV
Bell beans and other legumes	10	Bell bean tested negative in the survey, but beans and peas are considered good hosts for INSV, and to be safe, legumes are not recommended.
Slope Stabilization		
Hottentot fig (ice plant)	91	Was not found to be a host of INSV, but the flowers are good habitat for thrips
Annual grasses	10	Samples evaluated were from the foothills east of Chualar (likely bromes, fescues and/or wild oats)
Hedgerow plantings ²		
Coyote bush	19	
Willows	10	Only Arroyo Willow (Salix lasiolepis) was tested.
Deerweed	14	Acmispon glaber

PRINT SHARE

. .

UC

Q

100

Biology and management of thrips and the viruses they spread

Thrips/tospovirus biology

- Virus symptomology
- Thrips life cycle and virus transmission

Thrips and INSV host range

- Thrips dispersal and abundance in crops and non-crops
- Top 10 INSV hosts

Optimizing organic solutions for managing thrips and INSV

- Immune priming
- Precision sprayers

Enhancing Virus Control in Lettuce and Melons by Optimizing Immunity Priming Approaches

2.5 years (2021 – 2024); Year 1: Greenhouse trials

- 1. Actigard (AI = acibenzolar-S-methyl [ASM]).
- 2. Regalia (AI = extract of Giant Knotweed Reynoutria sachalinensis).

California Environmental Protection Agenci

eportment of

- 3. Cabrio EG (AI = pyraclostrobin).
- 4. DEsect (AI = silicon dioxide).

Dr. Kerry Mauck Assistant Professor of Entomology, UC Riverside

INSV severity

Enhancing Virus Control in Lettuce and Melons by Optimizing Immunity Priming Approaches

2.5 years (2021 – 2024); Year 1: Greenhouse trials

- 1. Actigard (AI = acibenzolar-S-methyl [ASM]).
- 2. Regalia (AI = extract of Giant Knotweed Reynoutria sachalinensis).
- **3.** Cabrio EG (AI = pyraclostrobin).
- 4. DEsect (AI = silicon dioxide).

Dr. Kerry Mauck Assistant Professor of Entomology, UC Riverside

Plant metabolites

Department of Pesticide Regulatio

Dr. Ian Grettenberger UC Davis

Mantis sprayer experiments

Organic insecticides for aphid and thrips control

Addie Abrams UC Davis

2 trials

- 4 products tested
- 2 application systems

Mantis with organic insecticides

- ➢Organic romaine lettuce
- ➤Two trials at different sites
- ▶2 applications
 - Manual thinning stage
 - 7-10 days after spray 1
- 4 products tested with both systems
 - Pyganic (pyrethrin)
 - Entrust (spinosad)
 - Neemex (azadirachtin)
 - Mycotrol ESO (B. bassiana)
- All products applied at per acre label max

Mantis with organic insecticides

Application 1 : Manual thinning stage

Application 2:7-10 days later

Mantis with organic insecticides

Sampling <24 hrs prior to and 6 days after each spray

Pre-harvest evaluation of INSV incidence

Preliminary results: Thrips

7

Treatment

Preliminary results: INSV incidence

Percent infection with INSV

Preliminary results: Aphids

Aphid pressure 6 days after spray 2

Thrips/INSV IPM model: Salinas Valley

Thank you

USDA-ARS Salinas, CA, Entomology Lab

Lab technician: Laura Hladky <u>Postdoc</u>: Viviana Camelo <u>Students</u>: Grace Hardy, Kiara Gable, Kai Larrieu, Jasmin Azad-Khan, Juan Vargas, Aaron Rocha

University of California: Richard Smith (Vegetables and Weeds, Monterey County)

Grower-Shipper Association of Central California Chris Valadez, GSA President Mary Zischke, INSV/Pythium Task Force leader

Growers and PCAs

California State University Monterey Bay JP Dundore-Arias, Plant Pathology <u>MS Student</u>: Karla Jasso

USDA-ARS Salinas, Virology CA Bill Wintermantel, Plant Virologist Students: Aaron Rocha

Email: daniel.hasegawa@usda.gov Cell: 831-206-8177

