Organic Soil Fertility Management

Richard Smith, Farm Advisor UC Cooperative Extension, Monterey County

Organic Soil Fertility

- Ideally, relies on biological processes, recycling of nutrients and active soil microbial activity to supply crops with the nutrients they need
- Processes may include nitrogen fixation by legumes, mycorrhizae, microbial decomposition, scavenging and cycling of nutrients by crops and cover crops, etc
- Recycling of nutrients includes use of composts, manures, other amendments

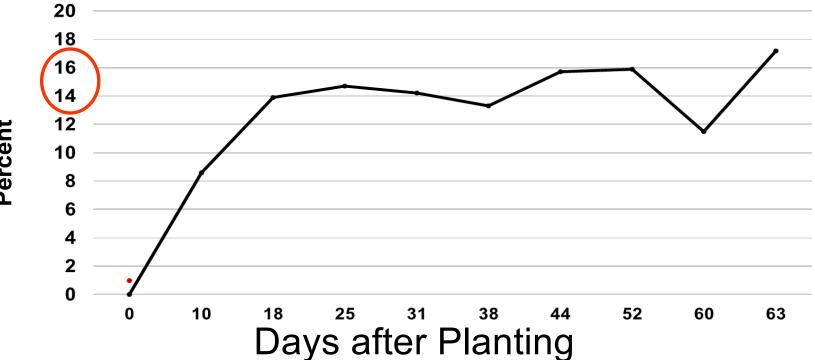
Phosphorus

- The need for phosphorus can be determined from soil tests which are a reliable indicator of the quantity of P available for crop growth
- The amount does not change rapidly over the cropping season and a yearly soil test is sufficient to keep track of the amount available
- Olsen (bicarbonate) extraction use for soils > pH
 6.0 (most soils here on the Central Coast

Phosphorus Soil Test Values and Yield Response to Phosphorus Fertilization

Bicarbonate-extractable soil P*

Сгор	Yield improvement likely	Possible yield Improvement*	Yield improvement unlikely
Lettuce/Celery	< 40	40 - 60	> 60
Other Cool Season Vegetables	< 25	25 - 35	> 35
Warm season vegetables	< 15	15 - 25	> 25


* Particularly in cold soil temperatures

Availability of P in animal manures and composts

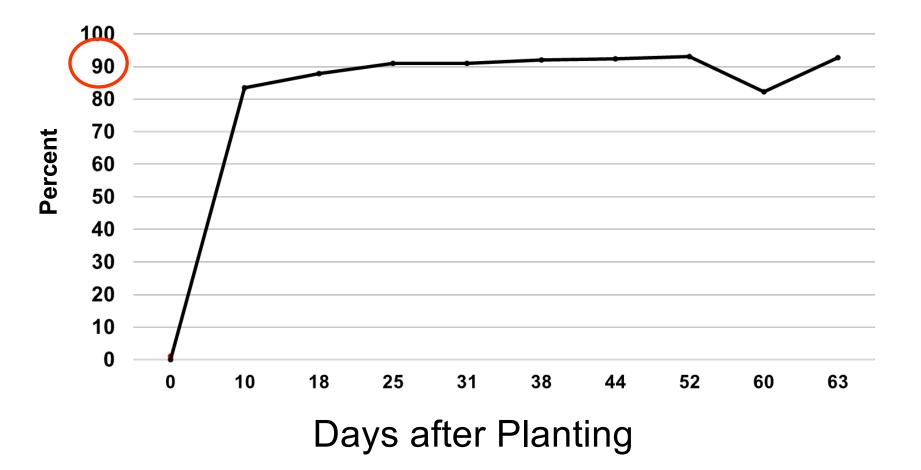
	% P in		
Material	organic form	phosphate form	
Feedlot manure	25	75	
Composted manure	16	84	
Dairy manure	25	75	
Poultry litter	10	90	
Swine manure	9	91	

- phosphorus in manure (fresh or composted) is equal in availability to synthetic fertilizer
- rock phosphate and bone meal are slowly available in acid soils and are unavailable in alkaline soils

Organic Fertilizer Trials Salinas Valley Phosphate released from 4-4-2 Fertilizer

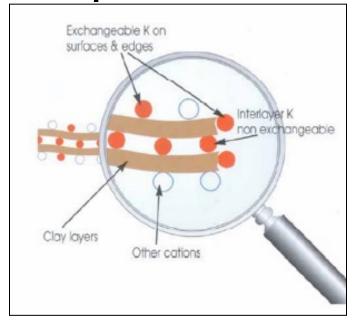
Given soil pH's in these evaluations (7.3-8.2), the phosphorus in 4-4-2 that comes from bone meal, is not available to the crop and remains in the soil as an insoluble mineral

Percent


Potassium

- The need for potassium can be determined from soil tests (ammonium acetate extraction) which is a reliable indicator of the quantity of K available for crop growth
- The tests usually range from 50-400 ppm (higher on clay soils and lower on sandy soils)
 Potassium is often taken up by many vegetables in greater quantities than nitrogen
- The amount does not change rapidly over the cropping season and a yearly soil test can be a good way to keep track of the amount of these nutrients that are neede

Sources of Potassium


- Mined minerals:
 - Potassium sulfate (40% actual potassium), potassium chloride (17%)
 - Greensand (1- 5%) low solubility
- Wood ash (4%)
- Seaweed (up to 2%)
- Compost (depending on feedstock, generally no more than 2%)
- Manures
 - Chicken (2.5%)
 - Cow (15-20%)

Organic Fertilizer Trials Salinas Valley Potassium released from 4-4-2 Fertilizer

Potassium Nutrition

- Issues with potassium result from <u>low levels</u> of potassium in the soil
- Also, '<u>fixation</u>' results from vermiculitic (2:1) minerals can trap K ions

Potassium deficiency on peppers

Potassium crop nutrition

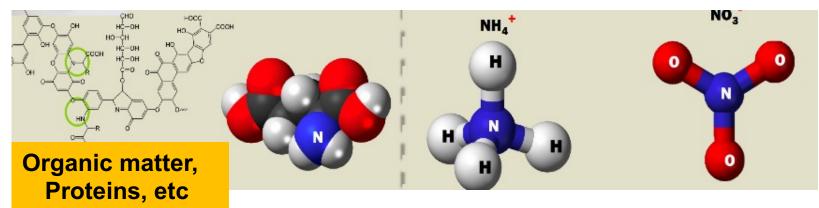
- Potassium is taken up by root interception
- Factors that reduce rooting or the amount of soil that the roots explore affect potassium nutrition
- For instance, in the early 1990's when peppers were being transitioned to drip irrigation, potassium deficiency began to show up (smaller root systems)
- Also, nematode issues can result in potassium deficiency symptoms on the plant

	Exchangeable K (ppm)		
Сгор	crop response likely	response possible	response unlikely
celery	< 150	150-200	> 200
other cool-season vegetables	<100	100-150	>150
potato, tomato, pepper	<150	150-200	> 200
cucurbits	< 80	80-120	> 120

Zinc and other nutrients

Given the climate and geology of California we generally have sufficient calcium & magnesium
 Use of composts and manures generally supply the needs for many of the micronutrients

Element	Response likely	Response possible	Response unlikely
Zinc*	<0.5	0.5-1.5	>1.5
Iron**	<5.0	5.0-10.0	>10.0
Boron	<0.2	0.2-1.0	>1.0


3 tons of compost (4,500 lbs dry weight) may contain 0.1 – 0.7 lbs of zinc or boron

Nitrogen

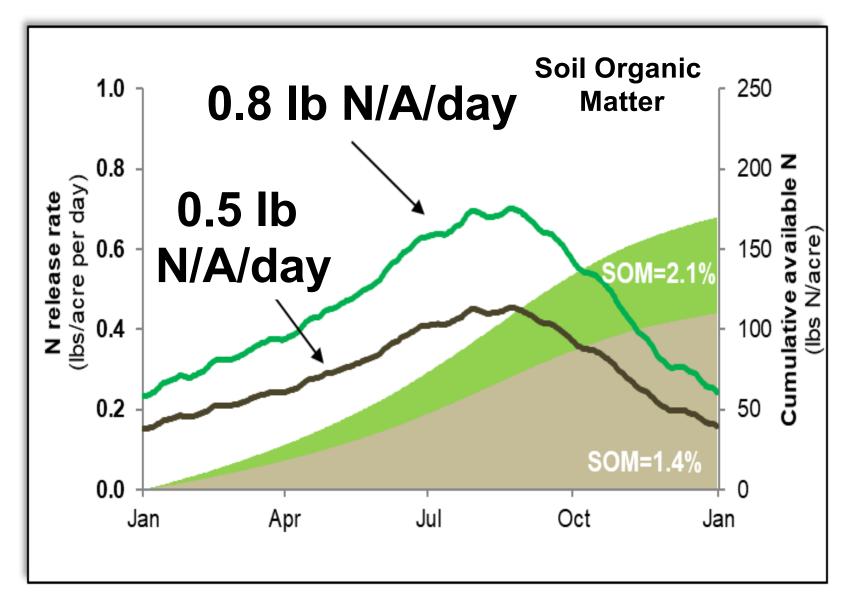
- Organic N management is complicated due to the different forms that nitrogen can occur We rely on the mineralization of nitrogen from soil organic matter, fertilizers and soil amendments to produce the plant available forms of nitrogen, nitrate and ammonium The mineralization of nitrogen depends upon several factors: 1) C:N ratio of the material; 2) temperature; 3) placement of the material Once the material is mineralized to nitrate, its availability is affected by its mobility in irrigation
 - or rain water which can cause it to leach below the root zone

Nitrogen Soil Fertility

- In organic production it is the most complicated and expensive nutrient to supply to crops
- It is made available by the decomposition of organic materials: soil organic matter, plant residues (crop & cover crop), manures, compost, slaughterhouse and fish residues & seed meals

Nitrogen Content of Various Organic Fertilizers

Fertilizer	Source
Dry	
2.5	Poultry
3 – 4	Seed meals
4	Poultry Manure + Meat and Bone Meals
12 – 13	Feather and blood meals
8	Meat and Bone
9 – 12	Guanos
Liquid	
2 – 5	Fish waste
14	Hydrolyzed soybean (solutionized)


Analysis and Carbon Content of Various Fertilizers

Fertilizer	% Carbon	C:N	Source
4-1-1	40	10	Seed meals
14-0-0	43	3	Hydrolyzed soybean meal
2.5-2-2.5	25	10	Poultry
4-4-2	28	7	Poultry Manure + Meat and Bone Meals
9 to 12			Guano
12-0-0	46	4	Feather
8-5-1	37	5	Meat and Bone

Nitrogen Uptake by Crops: A <u>starting point</u> for understanding the N needs of vegetable crops

Сгор	Crop Uptake Ibs N/A
Bell pepper	240-350
Broccoli	250-350
Brussels sprouts	350-500
Cabbage	280-380
Cauliflower	250-300
Celery	200-300
Lettuces	120-160
Baby lettuces	60-70
Onion	150-180
Spinach	90-130

Sources of Nitrogen for Crop Growth

Patricia Lazicki

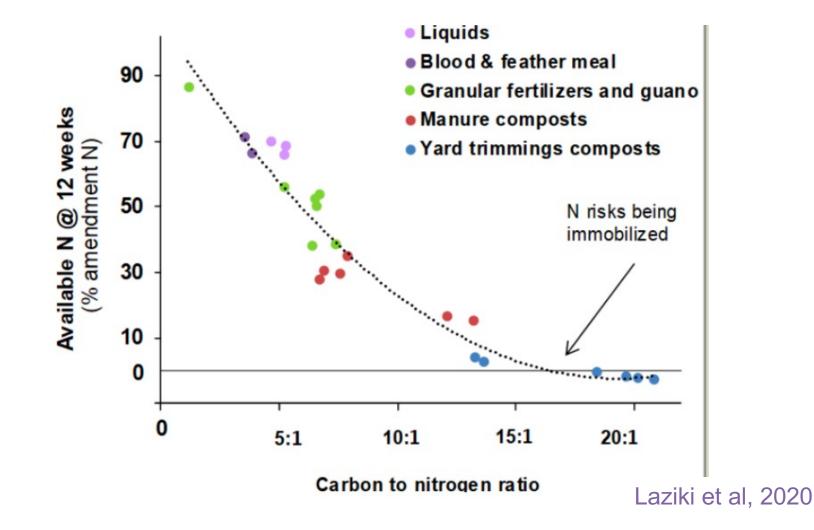
Crop Residues and Residual Soil N

160-240 lbs N Broccoli & cauliflower

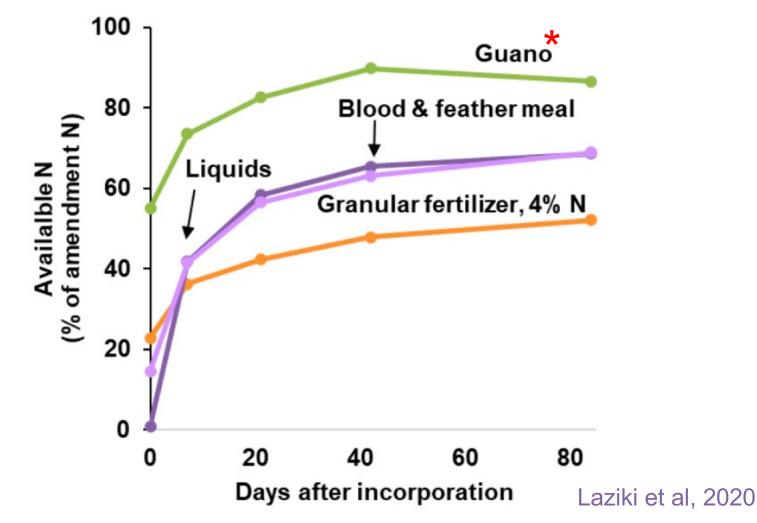
20-40 lbs N Spinach & spring mix

Cover Crop Residues

Nitrogen from Irrigation Water


Calculation: ppm NO₃-N x 0.23 = lbs N/acre inch

Example:

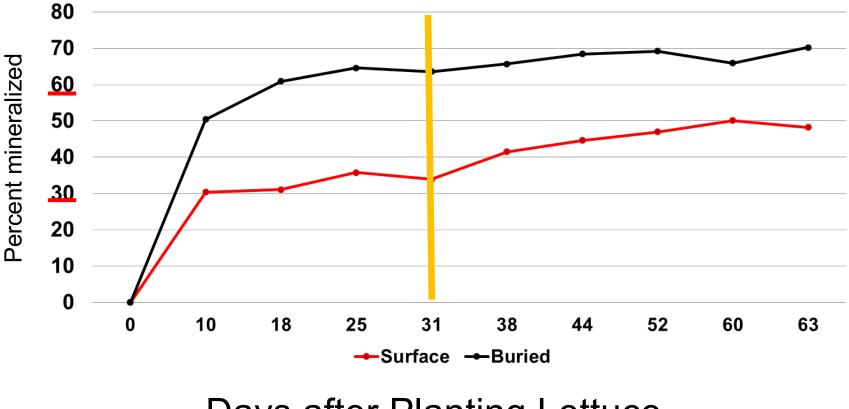

- Water nitrate-N concentration = 40 ppm
- 40 x 0.23 = 9 lbs N/acre inch
- If 10 inches of water applied:
- 10 x 9 lbs = 90 lbs N

Nitrogen Availability from Organic Fertilizers

Nitrogen Availability in Organic: C:N Ratio of the Material is the Driver

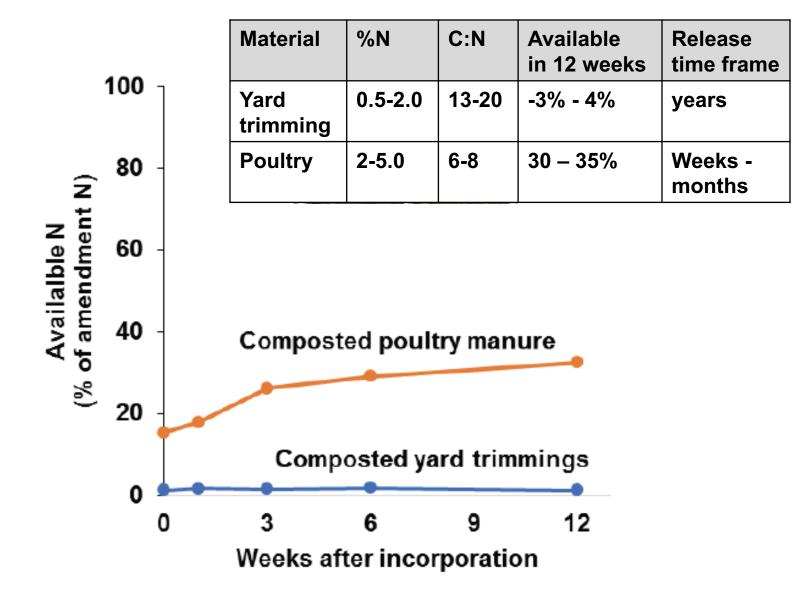
Availability of N from Common Fertilizers

In-field Fertilizer Mineralization Studies


Buried in soil

Place on top of soil

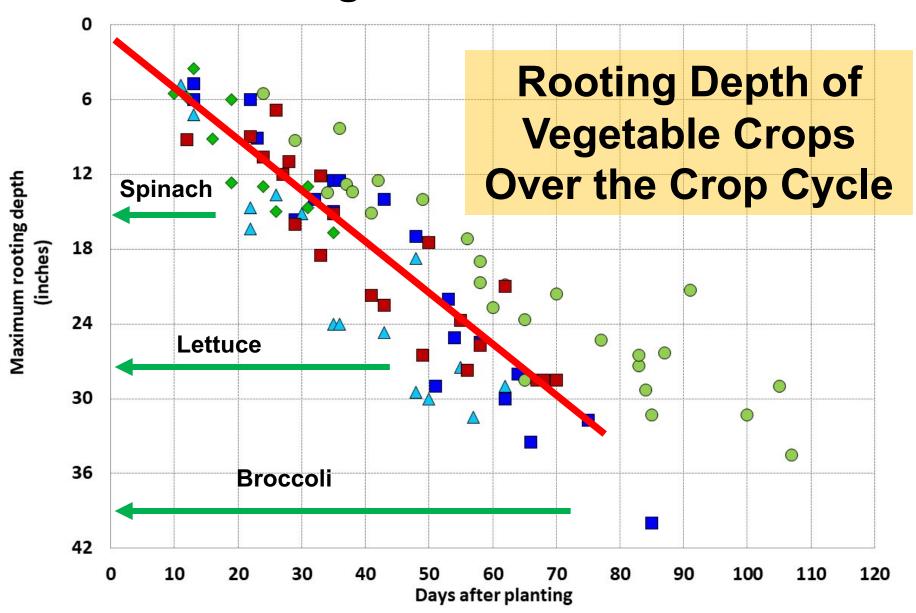
4 pouches collected weekly and analyzed for N, P & K over the crop cycle


4-4-2

Percent N Mineralized from Pouches Buried vs Surface 2016

Days after Planting Lettuce

Nitrogen Release from Compost


Need to Update Costs of Liquid Organic Fertilizers

Material	Туре	Cost/lb of Nitrogen
5-1-2	Liquid – Fish, corn	\$12.10
4-1-3	Liquid – Fish	\$13.30
14-0-0	Dry (soluble) – hydrolyzed soy protein	\$18.50 - 35.70
4-4-2	Dry – Poultry manure, feather and meat & bone	\$4.20

Crop Maturity and Fertilizer

- Fast maturing crops like spinach takes up 5-6 lbs N/A/day for the final two weeks (of a four week crop)
- The soil only supplied 0.5-0.8 lbs N/A/day
- Fertilizers and residual soil nitrate play a large role in supplying the N needs of a crop like this
- Longer season crops like broccoli takes up 3-4 lbs N/A/day
- It needs adequate N early in the crop cycle to build a plant capable of developing a good root system that can scavenge N from deeper in the soil profile; soil organic matter can play a larger role in its N needs

Rooting Depth, Soil Type and Irrigation Management affect NUE

Summary:

- Organic soil fertility is more complex than conventional
- It takes careful observation to develop skills and expertise to manage nitrogen fertilization
 In our experience, growers often applied less N than the crop took up
 - Residual soil N, nitrate-N in irrigation water and mineralization from soil organic matter probably made up the difference in the N demand of the crop
- There is a great deal of research going on to better understand mineralization of N from organic materials and from soil organic matter